Empirical Risk Minimization for Metric Learning Using Privileged Information

نویسندگان

  • Xun Yang
  • Meng Wang
  • Luming Zhang
  • Dacheng Tao
چکیده

Traditional metric learning methods usually make decisions based on a fixed threshold, which may result in a suboptimal metric when the inter-class and inner-class variations are complex. To address this issue, in this paper we propose an effective metric learning method by exploiting privileged information to relax the fixed threshold under the empirical risk minimization framework. Privileged information describes useful high-level semantic information that is only available during training. Our goal is to improve the performance by incorporating privileged information to design a locally adaptive decision function. We jointly learn two distance metrics by minimizing the empirical loss penalizing the difference between the distance in the original space and that in the privileged space. The distance in the privileged space functions as a locally adaptive decision threshold, which can guide the decision making like a teacher. We optimize the objective function using the Accelerated Proximal Gradient approach to obtain a global optimum solution. Experiment results show that by leveraging privileged information, our proposed method can achieve satisfactory performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Theory of Learning with Privileged Information

In Learning Using Privileged Information (LUPI) paradigm, along with the standard training data in the decision space, a teacher supplies a learner with the privileged information in the correcting space. The goal of the learner is to find a classifier with a low generalization error in the decision space. We consider an empirical risk minimization algorithm, called Privileged ERM, that takes i...

متن کامل

On the Theory of Learning with Privileged Information (Full version)

In Learning Using Privileged Information (LUPI) paradigm, along with the stan-dard training data in the decision space, a teacher supplies a learner with the priv-ileged information in the correcting space. The goal of the learner is to find aclassifier with a low generalization error in the decision space. We consider anempirical risk minimization algorithm, called Privileged E...

متن کامل

On the Theory of Learnining with Privileged Information

In Learning Using Privileged Information (LUPI) paradigm, along with the standard training data in the decision space, a teacher supplies a learner with the privileged information in the correcting space. The goal of the learner is to find a classifier with a low generalization error in the decision space. We consider an empirical risk minimization algorithm, called Privileged ERM, that takes i...

متن کامل

Learning a Distance Metric by Empirical Loss Minimization

In this paper, we study the problem of learning a metric and propose a loss function based metric learning framework, in which the metric is estimated by minimizing an empirical risk over a training set. With mild conditions on the instance distribution and the used loss function, we prove that the empirical risk converges to its expected counterpart at rate of root-n. In addition, with the ass...

متن کامل

Metric learning for incorporating privileged information in prototype-based models

Prototype-based classification models, and particularly Learning Vector Quantization (LVQ) frameworks with adaptive metrics, are powerful supervised classification techniques with good generalization behaviour. This thesis proposes three advanced learning methodologies, in the context of LVQ, aiming at better classification performance under various classification settings. The first contributi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016